soundservice
 
Επαγγελματικά συστήματα ήχου - φωτισμού - εικόνας.
Μελέτη - διάθεση - εγκατάσταση - service - ανταλλακτικά.
Εξαρτήματα - ανταλλακτικά ηλεκτρονικών συσκευών.
 
Αποστολές εμπορευμάτων σε όλη την Ελλάδα !!!
 
Γλώσσες
Greek English
|  | Επικοινωνία  
Βρίσκεστε εδώ:  Αρχική σελίδα >> Ηλεκτρονικό κατάστημα >> ΑΝΤΑΛΛΑΚΤΙΚΑ - ΕΞΑΡΤΗΜΑΤΑ - SERVICE >> ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ ΑΝΤΑΛΛΑΚΤΙΚΑ >> ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ IC >> Ολοκληρωμένα διάφορα >> ID=2359
Προϊόντα

brbr

Κατασκευαστές Περισσότερα


Αναζήτηση
Πληροφορίες

Τρόπος αποστολής - πληρωμής

Επικοινωνία

Οικογένειες Περισσότερα


Ελλάδα
Μετάβαση σε ID

payments

IC NJU39610FM2 ΟΛΟΚΛΗΡΩΜΕΝΟ ΚΥΚΛΩΜΑ

[njm39610fm2 nju39610fm2 NJM NJU 39610 FM2]

ID=2359

IC NJU39610FM2 ΟΛΟΚΛΗΡΩΜΕΝΟ ΚΥΚΛΩΜΑ
Επιλέξτε για μεγέθυνση

JRC NJM39610FM2 NJU39610FM2 ανταλλακτικό ολοκληρωμένο κύκλωμα μετετροπέας ψηφιακού σήματος σε αναλογικό, ειδικά σχεδιασμένο για χρήση με το NJM3771. Είναι διαθέσιμο σε 2 τύπους ανάλογα με το κέλυφος D2 KAI FM2. The NJU-39610-FM2 NJM-39610-FM2 is a dual 7-bit+sign, Digital-to-Analog Converter (DAC) especially developed to be used together with the NJM3771, Precision Stepper Motor driver in micro-stepping applications. The NJU39610 has a set of input registers connected to an 8-bit data port for easy interfacing directly to a microprocessor. The NJU39610 is well suited for highspeed micro-stepping application. FEATURES • Analog control voltages from 3 V down to 0.0 V • High-speed microprocessor interface • Automatic fast/slow current decay control • Full-scale error ±1 LSB • Fast conversion speed 3 ms • Matches NJM3771 • Packages DIP22/PLCC28. Resolution Resolution is defined as the reciprocal of the number of discrete steps in the DAC output. It is directly related to the number of switches or bits within the DAC. For example, NJU39610 has 27, or 128, output levels and therefor has 7 bits resolution. Remember that this is not equal to the number of microsteps available. Linearity Error Linearity error is the maximum deviation from a straight line passing through the end points of the DAC transfer characteristic. It is measured after adjusting for zero and full scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted. Power Supply Sensitivity Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output Settling Time Full-scale current settling time requires zero-to-full-scale or full-scale-to-zero output change. Settling time is the time required from a code transition until the DAC output reaches within ±1/2LSB of the final output value. Full-scale ErrorFull-scale error is a measure of the output error between an ideal DAC and the actual device output. Differential Non-linearity The difference between any two consecutive codes in the transfer curve from the theoretical 1LSB, is differential non-linearity Monotonic If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 7-bit DAC which is monotonic to 7 bits simply means that increasing digital input codes will produce an increasing analog output. NJU39610 is monotonic to 7 bits. n FUNCTIONAL DESCRIPTION Each DAC channel contains two registers, a digital comparator, a flip flop, and a D/A converter. A block diagram is shown on the first page. One of the registers stores the current level, below which, fast current decay is initiated. The status of the CD outputs determines a fast or slow current decay to be used in the driver. The digital comparator compares each new value with the previous one and the value for the preset level for fast current decay. If the new value is strictly lower than both of the others, a fast current decay condition exists. The flip flop sets the CD output. The CD output is updated each time a new value is loaded into the D/A register. The fast current decay signals are used by the driver circuit, NJM3771, to change the current control scheme of the output stages. This is to avoid motor current dragging which occurs at high stepping rates and during the negative current slopes, as illustrated in figure 9. Eight different levels for initiation of fast current decay can be selected. The sign outputs generate the phase shifts, i.e., they reverse the current direction in the phase windings. Data Bus Interface NJU39610 is designed to be compatible with 8-bit microprocessors such as the 6800, 6801, 6803, 6808, 6809, 8051, 8085, Z80 and other popular types and their 16/32 bit counter parts in 8 bit data mode. The data bus interface consists of 8 data bits, write signal, chip select, and two address pins. All inputs are TTL-compatible (except reset). The two address pins control data transfer to the four internal D-type registers. Data is transferred according to figure 10 and on the positive edge of the write signal. Current Direction, Sign1 & Sign2 These bits are transferred from D7 when writing in the respective DA register. A0 and A1 must be set according to the data transfer table in figure 10. Current Decay, CD1 & CD2 CD1 and CD2 are two active low signals (LOW = fast current decay). CD1 is active if the previous value of DA-Data1 is strictly larger than the new value of DA-Data1 and the value of the level register LEVEL1 (L61 … L41) is strictly larger than the new value of DA-Data1. CD1 is updated every time a new value is loaded into DA-Data1. The logic definition of CD1 is: CD1 = NOT{[(D6 … D0) < (Q61 … Q01)] AND[(D6 …D4) < (L61 … L41)]} Where (D6 … D0) is the new value being sent to DA-Data1 and (Q61 … Q01) is DA-Data1’s old value. (L61 … L41) are the three bits for setting the current decay level at LEVEL1. The logic definition of CD2 is analog to CD1: CD2 = NOT{[(D6 … D0) < (Q62 … Q02)] AND[(D6 …D4) < (L62 … L42)]} Where (L62 … L42) is the level programmed in channel 2’s level register. (D6 … D0) and (Q62 … Q02) are the new and old values of DA-Data2. The two level registers, LEVEL1 and LEVEL2, consist of three flip flops each and they are compared against the three most significant bits of the DA-Data value, sign bit excluded. DA1 and DA2 These are the two outputs of DAC1 and DAC2. Input to the DACs are internal data bus (Q61 … Q01) and (Q62 … Q02). Reference Voltage VRef VRef is the analog input for the two DACs. Special care in layout, gives a very low voltage drop from pin to resistor. Any VRef between 0.0 V and VDD can be applied, but output might be non-linear above 3.0 V. Power-on Reset This function automatically resets all internal flip flops at power-on. This results in VSS voltage at both DAC outputs and all digital outputs. Reset If Reset is not used, leave it disconnected. How Many Microsteps? The number of true microsteps that can be obtained depends upon many different variables, such as the number of data bits in the Digital-to-Analog converter, errors in the converter, acceptable torque ripple, single- or double-pulse programming, the motor’s electrical, mechanical and magnetic characteristics, etc. Many limits can be found in the motor’s ability to perform properly; overcome friction, repeatability, torque linearity, etc. It is important to realize that the number of current levels, 128 (27), is not the number of steps available. 128 is the number of current levels (reference voltage levels) available from each driver stage. Combining a current level in one winding with any of 128 other current levels in the other winding will make up 128 current levels. So expanding this, it is possible to get 16,384 (128 • 128) combinations of different current levels in the two windings. Remember that these 16,384 micropositions are not all useful, the torque will vary from 100% to 0% and some of the options will make up the same position. For instance, if the current level in one winding is OFF (0%) you can still vary the current in the other winding in 128 levels. All of these combinations will give you the same position but a varying torque. Typical Application The microstepper solution can be used in a system with or without a micro-processor. Without a microprocessor, a counter addresses a ROM where appropriate step data is stored. Step and Direction are the input signals which represent clock and up / down of counter. This is the ideal solution for a system where there is no microprocessor or it is heavily loaded with other tasks. With a microprocessor, data is stored in ROM / RAM area or each step is successively calculated. NJU39610 is connected like any peripheral addressable device. All parts of stepping can be tailored for specific damping needs etc. This is the ideal solution for a system where there is an available microprocessor with extra capacity and low cost is more essential than simplicity. See typical application, figure 14. n User Hints Never disconnect ICs or PC Boards when power is supplied. Choose a motor that is rated for the current you need to establish desired torque. A high supply voltage will gain better stepping performance even if the motor is not rated for the VMM voltage, the current regulation in NJM3771 will take care of it. A normal stepper motor might give satisfactory result, but while microstepping, a “microsteppingadapted” motor is recommended. This type of motor has smoother motion due to two major differences, the stator / rotor teeth relationship is non-equal and the static torque is lower. The NJU39610 can handle programs which generate microsteps at a desired resolution as well as quarter stepping, half stepping, full stepping, and wave drive. Fast or Slow Current Decay? There is a difference between static and dynamic operation of which the actual application must decide upon when to use fast or slow current decay. Generally slow decay is used when stepping at slow speeds. This will give the benefits of low current ripple in the drive stage, a precise and high overall average current, and normal current increase on the positive edge of the sine-cosine curves. Fast current decay is used at higher speeds to avoid current dragging with lost positions and incorrect step angles as a result. Ramping Every drive system has inertia which must be considered in the drive system. The rotor and load inertia play a big role at higher speeds. Unlike the DC motor, the stepper motor is a synchronous motor and does not change its speed due to load variations. Examining a typical stepper motor’s torque-versus-speed curve indicates a sharp torque drop-off for the “start-stop without error” curve. The reason for this is that the torque requirements increase by the cube of the speed change. For good motor performance, controlled acceleration and deceleration should be considered even though microstepping will improve overall performance. Programming NJU39610 There are basically two different ways of programming the NJU39610. They are called “single-pulse programming” and “double-pulse programming.” Writing to the device can only be accomplished by addressing one register at a time. When taking one step, at least two registers are normally updated. Accordingly there must be a certain time delay between writing to the first and the second register. This programming necessity gives some special stepping advantages. Double-pulse Programming The normal way is to send two write pulses to the device, with the correct addressing in between, keeping the delay between the pulses as short as possible. Write signals will look as illustrated in figure9. The advantages are: • low torque ripple • correct step angles between each set of double pulses • short compromise position between the two step pulses • normal microstep resolution Single-pulse Programming A different approach is to send one pulse at a time with an equally-spaced duty cycle. This can easily be accomplished and any two adjacent data will make up a microstep position. Write signals will look as in figure 10. The advantages are: • higher microstep resolution • smoother motion The disadvantages are: • higher torque ripple • compromise positions with almost-correct step angles


IC NJU39610FM2 ΟΛΟΚΛΗΡΩΜΕΝΟ ΚΥΚΛΩΜΑ IC NJU39610FM2 ΟΛΟΚΛΗΡΩΜΕΝΟ ΚΥΚΛΩΜΑ  

Διαθεσιμότητα: instock Διαθέσιμο. Σε απόθεμα στο κατάστημά μας. Αποστέλλεται άμεσα.     
Συσκευασία - μονάδα μέτρησης: Τεμάχιο
Κατάσταση προϊόντος: Καινούριο
Κατηγορία:  Ολοκληρωμένα διάφορα
Κατασκευαστής: JRC NJR NISSHINBO ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ
Περισσότερα σχετικά προϊόντα με αυτό, θα βρείτε στην οικογένεια προϊόντων: Ηλεκτρονικά εξαρτήματα Ανταλλακτικά

Επιστροφή στην κατηγορία:  << Ολοκληρωμένα διάφορα <<

 e-shop 



Προσφορές Περισσότερα

Κεφαλές laser διάφορες
HPD-10VF ΑΝΤΑΛΛΑΚΤΙΚΗ ΚΕΦΑΛΗ LASER HEAD CD-DVD


Ποτενσιόμετρα συρόμενα 75mm
75mm STEREO 100KB ΠΟΤΕΝΣΙΟΜΕΤΡΟ ΣΥΡΟΜΕΝΟ 10mm ΑΞΟΝΑ ΔΙΧΑΛΑ


ΒΕΛΟΝΕΣ ΠΙΚΑΠ
P34 ATN3482 ΑΝΤΑΛΛΑΚΤΙΚΗ ΒΕΛΟΝΑ ΠΙΚΑΠ (ΑΣΠΡΗ)


Ανταλλακτικά Pioneer CDJ-400
PIONEER CDJ-400 ΚΟΥΜΠΙΑ ΑΝΤΑΛΛΑΚΤΙΚΑ ΣΕΤ LOOP


Μεγάφωνα driver επίπεδα με βίδες
SICA CD78.26/245 8Ω ΜΕΓΑΦΩΝΟ DRIVER ΥΨΗΛΩΝ 1'' 32W


ISO φίσες καλώδια για radio-cd ηχοσυστήματα αυτοκινήτων
2-ISO ΚΑΛΩΔΙΟ CAR AUDIO ΓΕΝΙΚΗΣ ΧΡΗΣΗΣ ΒΥΣΜΑΤΑ ΜΕ ΚΑΛΩΔΙΑ


Ανταλλακτικά Pioneer DJM-600
PIONEER DJM-600 ΚΑΛΩΔΙΟΤΑΙΝΙΑ 23 ΕΠΑΦΩΝ 190x30mm


Ανταλλακτικά Pioneer XDJ-XZ
PIONEER XDJ-XZ ΑΝΤΑΛΛΑΚΤΙΚΟ ENCODER TIME


Βύσματα τροφοδοσίας
CN10-02 ΒΥΣΜΑ ΤΡΟΦΟΔΟΣΙΑΣ ΑΡΣΕΝΙΚΟ ΣΑΣΙ AC 220V FASTON C10 ΚΟΥΜΠΩΤΟ





Copyright 2005 - 2020 Greece AUDIOLIGHTS. Επαγγελματικός Ήχος Φωτισμός Εικόνα Ανταλλακτικά Επισκευές.
Εξειδικευμένα ανταλλακτικά για επαγγελματικά συστήματα ήχου και διάφορες ηλεκτρονικές συσκευές. Ηλεκτρονικά εξαρτήματα επισκευής.
Επαγγελματικά συστήματα ήχου - φωτισμού - εικόνας. Μελέτη, διάθεση, εγκατάσταση, service, ανταλλακτικά.
ΑΠΟΣΤΟΛΕΣ ΕΜΠΟΡΕΥΜΑΤΩΝ ΣΕ ΟΛΗ ΤΗΝ ΕΛΛΑΔΑ.

ΕΠΙΚΟΙΝΩΝΙΑ